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1. SUMMARY

Letmia=1t,<t, <...<t,=b be a partition of the interval I = [g,b], k an
integer greater than one, and denote by S,* the set of all polynomial spline
functions on [a,b] of degree k — 1 on =, i.e., with (interior) joints (or knots)
at the points ¢, t5, ..., #,_;. This note is concerned with the behavior of

dist(f, S,*) = inf{||f — pli| p € S},
as the mesh of =,
|7| = miax(t,H — 1),

goes to zero. Here, fis an element of the real Banach space C(I) with norm
llglly = max{|g(t)||t eI}, forallge C(I).
It is proved that, for all fe C({),
dist(f; 8;*) = O(w(f; [7])) (1.1

as |m| >0, where w(f;') is the modulus of continuity of f. Hence, if
fe C¥(I), then

dist(f; $,) = O(|7[" w(f; |7|)), (1.2)
for 0 < r < k — 1. In particular,
dist (£, S,*) = O(|=[)

for fe C*¥(I), or, more generally, for fe C*~1XI), such that f*~1) satisfies
a Lipschitz condition, a result proved earlier by different means [2]. These
results are shown to be true even if 7is permitted to become infinite and some
of the knots are permitted to coalesce.

The argument is based on a “local” interpolation scheme P, by splines,
which is, in a way, a generalization of interpolation by broken lines, and
which achieves the convergence rate (1.1). The linear projector (i.e., linear
idempotent map) P, can be shown to be bounded independently of 7. Hence,
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the argument supplies the fact that any sequence S¥, with lim |=,| = 0 admits
a corresponding uniformly bounded sequence P,, of linear projectors on
C(I) with S¥, the range of P, , which converges strongly to the identity. Such
sequences are important for the application of Galerkin’s method and its
generalizations to the approximate solution of functional equations (cf.,
e.g., [I]).

The following standard notation will be adhered to throughout. For T
some set, m(7T) denotes the Banach space of all bounded real-valued functions
on T, with norm

I/ 1l = sup [/(®)], forall fe m(T).

If T'is a closed subset of the real line, %, then C(T’) denotes the closed linear
subspace of m(T’) consisting of all continuous (bounded) functions on 7.

2. GENERAL REMARKS

The arguments to follow derive from the following considerations.

Let X be a normed real linear space, {¢,}7_, a finite subset of X with § its
linear span. A set {A;}7_, of linear functionals on X is said to be a dual set for
{$r_, if

Ao, =06, Lhj=1,...,n Q2.1

If {¢,}7_, has a dual set {A;}7_, consisting of continuous linear functionals,
then the rule

Px = i N x)$,, forallxe X, 2.2)
i=1

defines a continuous linear projector P on X with range S. In fact, since
{$:}7. | is a finite set, there exists an A such that

’z wai| < Al for all () € . 23)
Then, for all x € X,
IPx]| < A max [, x| < A max |A,]lx], 2.4
i i
hence
IPll< 4 max 1Al 2.5

The last inequality in (2.4) also shows that

max A )l < | 3 ) Poral@yed,  9)
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since for x = o;¢,;, one has A, x = «;, i =1, ..., n. This statement has the
interesting converse:

LEMMA 2.1. Let X be a normed linear space, {¢;}1.., a subset of X. If there
exists a B> 0 such that

(el < BlIZ o 'l for all (o) € 27, (2.7)
then {¢,} has a dual set {A} of continuous linear functionals on X satisfying
max Al < B. 2.8)

Proof. Let 1 <i<n, and denote by S; the linear span of {¢;| j=1, ..., n;
j # i}. By a corollary to the Hahn-Banach theorem, there exists a continuous
linear functional A; on X such that 4,[S;] =0, |[A;| = 1, and A, ¢; = dist(¢;, S)).
But

dist (¢, S;) = inf{

¢ — j; &y ‘I"jf

)< |

n

,Zl o;b;

Jj=

:inf{

(aJ) € %n, o = 1}

> inf(B~!|(o5)l| (o) € 7, oy = 1} > B4 > 0.

Hence, with A, = (A; )" A,, i =1, ..., n, {\}7_ , is a dual set for {¢,} such that
max [A;]| < B. Q.E.D.

On combining Lemma 2.1 with (2.6), one gets
inf{I3; o duli| el = 1} = mlin dist (¢, Sy). (2.9)

COROLLARY. Let {¢}7_ | < X, S, the linear span of {¢;} ;1. If
0 < infdist (¢, Sy), (2.10)

then there exists a continuous linear projector P on X with range the span S
of {¢,} such that
IPli< sup > a;ll/ inf (12 ey byl (2.11)
llees)lf = 1 lteea)ll = 1
Remark. The right-hand-side of (2.11) can be interpreted as the condition
number of the basis {¢;} for S. This leads to an interesting connection between
the existence of linear projectors with range S of “small” norm and the
existence of ‘‘well-conditioned” bases for S, which we will not pursue here
further.
The finiteness of the set {¢,} was not used in any essential way in the preceding
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discussion. The same arguments apply to a subset {¢;};.» of X ,where &
denotes the integers, provided
Z o ‘f’i

ieZ
can be interpreted in some reasonable way as an element of X for each

o= (o;) € M(Z), and, connected with this, one can ascertain the existence of
a constant 4 such that

[|iEZg o )l < Allallg  for all « € m(Z).

3. POLYNOMIAL SPLINES ON THE REAL LINE

In order to circumvent certain (mostly notational) complications, and for
its own interest, uniform approximation on the entire real line by splines is
treated first.

A biinfinite real sequence = = {t;};. o is called a k-extended partition of the
real line Z provided

<ty forallieZ,

. 3.H
lim ¢, = Fo0.

isto

Hence, if d; denotes the frequency with which the number ¢, occurs in 7, then
di<k—1forallie Z.

With 7 a k-extended partition of #, k=2, let S,* denote the set of all
(polynomial) extended splines of degree k — 1 on =, i.e., S,* consists of those
real-valued functions on &% which reduce to a polynomial of degree <k — 1
on each of the intervals [#,1,,,], for all ie &, and which have k —1—d,
continuous derivatives in a neighborhood of ¢, for all i € Z. Further, define

B*=S8,%N C(%), (3.2)

the set of bounded splines of degree k — 1 on .
It is shown in [4; Theorem 5] that S.* is linearly isomorphic to %%, the
isomorphism being

() = 2 M, (3.3)
iex

€

Here, with a slight change of notation as compared with [4],
M) =kg(ti, tiirs. o tivis 1) (3.4)
is k times the k-th divided difference in s of the function

gls; )= (s — )i (3.5
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on the points £, ..., t;. Thus, if f; < 1, < ... < t;,, then

Mty =k S = 8 TT (- 1) (3.6)

mj—.li
The basic properties of the M;’s all follow easily from the fact (already
observed in [3]) that

] >
Fsoontid = | Mo 1o (37
for all fe C®, Tt follows, in particular, that
M (1) = 0 with equality iff £ ¢ (¢,, £, 1), (3.8)
and
"o ftitk
|7 Myde=| " M)dr=1. 3.9)

Note that (3.8) guarantees that >, . » o; M;(¢) is well-defined at every r € #
for all @ € %, since, for t € [t,,t;,,],

J
2 oo M(t)y= > o M(t).
e i Tk

For the purposes of this note it is more convenient to work with the spline
functions
L= 1
ill) =—
Bl ="
=gty -t 1) — 8t o s tisk-15 1), (3.10)

since this normalization gives

Mi(t)

> d)=1. (3.11)

ied
To prove (3.11), observe that
05 I = lj"tk—l’

fivovyljigys )=
g(p s Lj+hk—1s ) l,f<lj,

since, in either case, g(t;,..., %14y 1) is the (k — 1)st divided difference of a
polynomial in s of degree <k — 1, this polynomial being p(s)=0 when
t> 141, and p(s) = (s — 1) ! when ¢ < ;. Therefore, for ¢ € [¢;,¢,,,],

. i
D obty=" > gttt ) =gt oty 1]
iex i= itk
=g(tisrs ot 1) — 8llisycgs o 153 1)
= 1.

Forlater reference, various properties of the ¢,’s are collected in the following
15
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LEMMA 3.1. Let 7 be a k-extended partition of A, and let ¢(t) be defined on
R by (3.10), forallie Z. Then

Ny O0<h()<lforallte Fandallic ¥,
(ii) du(t) =0iff £ ¢ (ti, i), forallie Z;
(iii) Zz $i(t) = 1;

(V) |3 ady <ol forallaem();
lieZ ¥ 3
V) if {m™32_ | is a sequence of k-extended partitions for # such that

limeM™=1¢;, j=i...,i+k,

H—> 0

then the corresponding sequence {${P}°_ | converges uniformly to &, i.e.,

fim [ — by = 0. (3.12)

Proof. (i) and (ii) follow from the corresponding statement (3.8) for the
M,’s and from (iii); (iv) is a consequence of (i) and (iii). This leaves (v).

Since ¢")(¢) = O0for z ¢ (+{, 1)), and lim 1 ) = ¢, for allj € &, it is sufficient

n-—oo

to prove

lim [|${" — ¢/, =0 (3.13)
for some finite interval I containing [f;,7;,.] in its interior. Now, since
g(s; 1) =(s—t)*"!, g and its first kK — 2 partial derivatives with respect to s
are jointly continuous in s and ¢ uniformly on 7 x I. The (k — 1)st divided
difference

g(sh . "Sk; t)
is, therefore, jointly continuous in s,, ..., 5, f, uniformly on
{(Sgseemns) el x L X T8 <8~ 8,8, <S8y <Co.. <8t X,

for each & > 0. But this implies (3.13), since ¢,(¢} is the difference of two
(k — 1)st divided differences of g(s; ¢) in s, and the 7 and 7 are k-extended
partitions and lim ¢ =17, j=14,....i+ k. Q.E.D.

n—o

The main result of this section is the following

THEOREM 3.1. Let k > 2, let m={t,},.» be a k-extended partition, and let
¢; be defined as in (3.10), for all i € Z. Then there exists a positive constant
D, depending on k but not on =, such that

Di! < infdist; (¢;, S,), (3.14)
ieZ
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where
dist; (¢, S;) = inf{ijqﬁi — > i m(J)‘ (3.15)
i J#i
and the seminorm =+, is given by
Sfii=m Wier =t <<tiwayts Jorall fe C(R). (3.16)

Remark. In the light of Section 2, this theorem implies the existence of a
dual set {A;}, . o for {¢}, such that

A< DS = Dy fllg forall fe C(A). (3.17)
The linear projector P, on C(#), given by the rule
P.f=> ()¢, forallfe C(#), (3.18)
ieZ

has then B.* as its range, and satisfies '|P, | < D,. Moreover, since, by (3.17),
each A; has its support in the interval [7,,,,4;,,_,], one obtains the pointwise
error bound

Lf(5) = (Pr f)(9)] < Dymax {|f(s) = S| 1 € [tinin tia ]
forallse[r, t;,,), allie &, and all fe C(Z). (3.19)

for the “local” interpolation scheme P,.

Proof of Theorem 3.1. 1t is sufficient to prove the theorem for a strictly
increasing partition =. For, if 7 is not strictly increasing, then one can find a
sequence {7} | of strictly increasing partitions such that

'l

Hm ¢t/ =1¢, forallje2Z.

H-» 0

By Lemma 3.1(v), one has then

lim [[¢5" — ¢l =0

n—>o0

for the corresponding sequence {¢{"}2_,, for all je Z. Since on the finite
interval [#;,,7;,,_,], all but finitely many of the ¢{” vanish, one has

Hmy > oyg$ — Zy ocjgbj_:O for all @ € m(Z).

now!jeZ JjeZ i
Hence, forall x e m(Z)and alli e &,
> }

dist, (4, S) < ¢<">— 3wl i S aqu,"
g no® RN

Therefore, foralli e &,
lim dist, (¢, S) = dist, (¢, S,). (3.20)

n->0n
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Hence, once a positive constant D, has been shown to exist such that for every
strictly increasing partition

Dt <infdist, (¢:, Sy),

then, by (3.20), this inequality holds also with the same constant for every
k-extended partition.
Hence, assume 7 to be strictly increasing, and let i € &. For k = 2, there is
little to prove. For, then
= 1A))
while by Lemma 3.1,
d(t;)=0,; foralljeZ.

Thus, dist; (¢;, S;) = 1, and D, =1 will do.
Assume, therefore, also, k > 3. Since > ;. # ¢, = 1, one has
~inf 1= S a
i aem(@)) f;—é’i JqSJ“i

Further, if f(#) = 1 — 2 j; «;¢,(f),and i + 1 <r < i+ k — 1, then, for suitable
Bh e Bk—h one has

k—1
f(t) =1+ Z Bj(t - ti+j)k_>la forall e [tra tr+l]'
=i
To see this, observe that, by (3.10) and (3.6),

O~ 1) 3 = 1)
where

w(t) = ﬁk (t—tn).

m=j
But, since (s — £)*71 -+ (—1)*" (¢ — s}k = (s — ¢)*71, one has also
di(t)= (14— 18ty .. ot t)

= (=Dt — 1) 8t 1o t0k)

itk
=DMt — 1) 2 (= )i e ().
m=j

Hence, if j </, then, on [t,,t..,], $;(¢) can be written as a linear combination
of the functions (f — #,.4 )", ....(t — £;,)*"!, while if j > i, then, on [t,,t,,,],
¢ (1) can be written as a linear combination of the functions (r — #,)¥7},...,
(t—r=)"
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It follows that, fori+ 1 <r<i+k—1,
k-1
dist; (¢, S) = inf |1+ 3 Br—1, ) ! . (3.21)
Bexk1: J= [ty tr+1]
In particular, choose r such that also
TJ-“—ij\(:f,,“—T,, fOI‘j:l’ﬁ-l,...,i%-k*Z.

Then, since the right-hand-side of (3.21) is invariant under a change of scale
and origin in Z, the proof of the theorem is complete, once the following
lemma is proved:

LEMMA 3.2, Let I = [—1,1], n > 2. There exists a positive constant C, depending
only on n, such that

Cit<|l+ 3 Bt—s))|
i Jj=1 ¥ ¢
whenever (8;) € #" and

S; <8 <o < 8y=—1, =8p <...<8,, (3.22)

S —8;<2, forj=1,..,n—1. (3.23)

Proof. The argument is based on the fact that

1 n |
Iyl — inf 1+ 5 Byt -5y (3.2
Be®™ J=1 B

can be expressed in terms of the s;’s. Explicitly, one has

yl= }"SO Vi / (”) , (3.25)

i= 1

where the o;’s are the elementary symmetric functions in the s,’s, i.e.,

n

I @¢+s)= Z ot (3.26)

J=1 i=0

Further, the y;’s are given by

1) = 3wt (3:27)

where T, is the Chebyshev polynomial of degree n.
It follows that 97! is linear in each of the s;, hence for some constant c,
depending only on », one has

[y~ < camax|s;|.
J
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But, then, with (3.23),
I')/| = [C,,(2I’l + 1)]AI:-

so that C, = ¢,(2n + 1) will do.
Tt remains to prove (3.25). To this end, observe that the functions

ho(t)=1, hiy=(@—-sy, j=1...n

form a basis for the linear space &, of all polynomials of degree <n. To see
this, note that the relation

Bot 3 Bli—sr=
J i

e

Pyt (3.28)
0
is equivalent to
BO 8ni + Z Bj(hsj)i = :}\/l‘l—i/(}:) > I = 05 e, (329)
i=1

as one can easily see by comparing the coefficients of like powers of #in (3.28).
On setting ¢ = —s; in (3.26), one finds

n

> o= =0, j=1,..,n,
i--0

hence,

io i %4/(7) = 0,0+ é’io Oi i Bi—s;)!

i i-1

(3.30)

=Bot+ 2 B 2 od=s) =Py,
J=1 i=0
showing that (3.28) may be solved for 3;. As for 8, j > 1, note that the first »
equations in (3.29) involve only 3;, j = 1, and may be solved for these, since
their coefficient matrix is the Vandermonde matrix on the distinct points
—8;,J =1, ..., n,and hence nonsingular. This shows that the set {h;] j=0,...,n}
is generating for Z,, hence a basis.

With this, {h;(t)|j=1,...,n} is easily seen to be a Chebyshev set on 1.2
For, assume by way of contradiction that

f0= 3 Biho)

vanishes at the points r;, i =1, ..., n, with
—l<r<...<r,=l1, (3.31)

2 For the definition and basic properties of Chebyshev sets, cf., e.g., [5, Chap. 3].
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while not all of the 3;’s are zero. Then, since by the above, {/4,(¢)] j=1.,....n}
is linearly independent on 7, f(¢) is not identically zero. It is, therefore, no
loss to assume that

n

" H
2 Bihy= 11T G—r)= 2> 31
iZ i o

which implies, with (3.28) and (3.30), that

N 0P / (7 ) rrrrr 0. (3.32)
i=0 ]

EO O'i’}A/n~i/( ) (n)t 2 H ($i = Fe)s

i= 717

But this is impossible. For,

where the summation on the right is taken over all permutations = of degree n.
Because of (3.22) and (3.31), all terms in that sum are seen to have the same
sign and, since n > 2 and the #;’s are distinct, not all terms are zero. Hence

Z g ﬁ/’>n—i/(}/.l) 75 07
i=0 1
contradicting (3.32).

It follows that if e(t) =1 + > | B,(t — ;)" is the error in the best approxi-
mation—->"_, B,h;to hy with respect to the norm |-, then e(¢) must alternate
at least n + 1 times on I. Since e € &, e is, therefore, necessarily of the form

e(r) =T, (1),
and (3.25) follows from (3.28) and (3.30). Q.E.D.

COROLLARY |. The linear map D given by

GDa= > oy, forall o e m(Z),
ieZ

is a linear homeomorphism from m(Z) to its range. Hence, its range coincides
with B.*, and B,* is a closed linear subspace of C(#).

Proof. Let « € m(¥). Then, for all i € Z such that «; # 0, one has
— : . I
E :; jﬁij = [o] i — j%i(*“j/“j) (ﬁJ\l (3.33)
= |og| dist; (i, S7) = |o| D

Hence
Dl = ey Dyt for all & € m(%), (3.34)
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showing that @ is bounded below, hence boundedly invertible on its range.
Since also, by Lemma 3.1,

|Pallp < |2z for all x € m(Z), (3.35)

the first assertion follows.
By (3.35), the range of @ is contained in C(#), hence in B,*. Further, by
[4; Theorem 5], each p € S, * is of the form

p= > o¢;, forsome «ecZ#Z
ieZ
But then, by (3.33), p € B,* implies « € m(Z), or, p is contained in the range

of @. It follows that the range of @ coincides with B,*, hence, in particular,
that B,* is closed. Q.E.D.

COROLLARY 2. There exists a linear projector P, on C(#) with range B.*
such that

©) 1P|l < Dy

(i) [f() = (P, )(®)]| < max{|f(s) =[O ticas2 <t < tigni}s
forallse[t,t,,), allie &, and all f e C(X).

Proof. Let i e &. By Theorem 3.1,

#i'— 2
| J#i

Hence, by a corollary to the Hahn-Banach theorem, there exists a linear
functional A; on C(#) such that

dist, (4., S:) = inf{

xe m(f»’f)} > D' >0.

i

(3.36)
A fl < Dlfl; forall fe C(X).
With this, the rule
P.f=3% (Af)d, forallfe C(R), (3.37)
ieZ

defines a linear projector on C (%) whose range is B.*, by Corollary 1. Further,
its norm is <Dy, since

P flle < sup S < sup DSl < Dillfla-
To prove (ii), let f€ C(%), s € 2. Then
J(s)—=(Pf)(s) =f(S)—jEZy A ) di(s)
= J_Ezg M(f(s) 1= f)dy(s),
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since 1=>,.2¢;€BE, therefore 1=P,(1)=>;.A{1)$,. Hence, for
i€ ga sSE [tb tH—l]s

SO-ENEI=| 2 A6 1-Nb)
<max{{A(f(s) 1 =li+1 -k <j<i}
< Dymax{|f(s)-1—fl;|i+ 1 —k<j<i}
= Dymax{|f(s) = f(O)||tis2s < 1 < timyiids
using (3.36) and the definition (3.16) of || ||;. Q.ED.

4. SPLINE APPROXIMATION ON A FINITE INTERVAL

The interpolation scheme P, introduced in the previous section for a k-
extended partition # = {t,;};.» of # is “local” in the sense that, on [t,,¢,],
P, f depends only on the values of fin the interval [#,_,2,_,.,]; this follows
directly from (ii) of Corollary 2. In particular, if # is such that

La=lhg=...=l=aq, b=ty,=ty =...=ly,

then P; f on I= [a,b] depends only on the values of f on I. Hence, by the
simple device of restricting attention to the interval I, P; becomes a linear
projector P, on C(I) with range the set of extended polynomial splines S,*
of degree k — 1 on the restriction

ma=t<h<bL<..<tL,_  <t,=b

of # to I. Since the bounds for P, derived in the previous section are also valid
for P,, one obtains, finally, the results announced in the introduction.

To make these statements precise, define for I = [a,b] the restriction map
from C(#) to C(I) by the rule

Ry x)(t)=x(¢), foralltel, xe C(A). 4.1
R; is a norm-reducing linear map, having the extension map £,
x(a), t < a,
(E;x)(@®)={x(t),a<t<b, forall xe C(), 4.2)
x(b), b < t,

as a norm-preserving right inverse.
Call 7w = {t,}7_ a k-extended partition for I, provided

a=ty<t;<...<t,_<t,=b,
0 1 \-nl n (43)
t, <t foralli

16
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As before, let d; denote the frequency with which the number ¢#; appears in 7.
Then define the set S,* of all polynomial extended splines of degree k — 1 on
ar as the set of all real-valued functions on I which, on each of the intervals
[ti,21), i=0, ..., n—1, reduce to a polynomial of degree <k — 1, and have
k — 1 — d; continuous derivatives in a neighborhood of ¢, i=1, ..., n— 1.

LeMMA 4.1. Let I = [a,b] be some finite interval, = ={t;}?_, a k-extended
partition for I, and extend m in any way whatsoever to a k-extended partition
7 ={t;}ico of %, subject only to the restriction

fa,—k+2<j<0,
j_{b,n<j<:n+k—2. (4.4)
If P is a linear projector on C(&) with range B,*, then
P=R,PE, 4.5)

is a linear projector on C(I) with range S,*, satisfying ||P| < |/P|.

Proof. Since the numbers ¢, ¢, each appear in # k — 1 times, every p € B,*
need only be continuous at #, and #,. It follows that E; maps S.* into B,
Hence, as P is the identity on its range, B;, it follows that, for p € S,*,

Pp = (RIPEI)I’ = RIP(EIP) =R(E;p)= (R EDp=p,

or, P is the identity on S,* But, since R; maps the range B;* of P to S,*, the
range of P must be contained in S.*. Hence, the range of P is S.*, and P is
the identity on its range, i.e., P is a linear projector. Finally,

1P|l < IRAIPYIE = |B]. Q.E.D.
In particular, P, = R, P, E, is a linear projector on C(I) with range S, *,

where P is as described in Corollary 2 to Theorem 3.1. This gives

THEOREM 4.1. There exists a positive constant D, depending only on k, with
the property: For all k-extended partitions = of I = [a,b), there exists a linear
projector P, on C(I) with range S,* such that

(@) Pl < Dy

(i) 1/() = (Po /)] < Dymax{|f(s)—f(OI|1 € [ti-xr2: tiri1 s
forallse[t,,t; ]1and all fe C(1),
where t;=a,j<0,t;=b,j>n.

Proof. Since R; E; is the identity, one has, with P, = R, P; E|,
J(8) = (Pr f)(s) = (EL f)(s) = [Ps(E; ))I(s), allse(a,b];

hence, (ii) follows from Corollary 2 to Theorem 3.1,



ON UNIFORM APPROXIMATION BY SPLINES 233

COROLLARY 1. For all fe C(1),
1S = Pa fllr < Dk — D ([ [7]).

Proof. This is a consequence of (ii) of the preceding theorem.
Denote P, by P_*, to emphasize dependence on k.

COROLLARY 2. The preceding estimate can be improved for smooth f:

() If—P* Sl < Dy Dk—l .- ﬁk—r{”]rw(f(rk (7)),
forallfe CO(D, r=1,...,.k—1,
with D, = D(k — 1) for k > 2, and D, = 1.

Hence,
@) If— P* fllp = O(|=|*) for all f € Lip{~V (1),
where, as usual, Lip{*"V(I) consists of all f€ C* V() with f% U satisfying a

Lipschitz condition (with exponent 1) on I.

Proof by induction on k. Consider k = 2. Then P_* is broken line interpola-
tion, i.e.,

P2 N)(@) f(ti) a1~ +f(tl+1) i t, 1€ [ty tis]-

1

Assume, without loss in generahty, that ¢ —¢, <3(¢;;; — t;). Then, with
fecw,

JO-E2N0O = | rs)ds *ﬂt—tl%@

=) =fENE— 1),

for some ), £ € (1, 1;,,), from which (i) follows for this case.
As for the general case, observe that

St ={r'|peSt,

(t—1)

unless 7+ contains points repeated k — 1 times, in which case, neither side is
defined. But as = is a k-extended partition on 7, I may be subdivided into finitely
many subintervals I; = [g;,a;,,], i=1,...,r, Witha=a, <a, <...<a,,; =b,
such that{g,|i = 2,...,r} coincides with the set of points in 7~ which are repeated
k — 1 times. If 7; denotes the restriction of 7 to I, then 7, is a (k — 1)-extended
partition of [;, and Lemma 4.1 shows that

P#i = RI:PﬁEIi = RthkEIp
hence

F@O) =P N)@O) =) —(P5./)(), foralltel,.
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It is, therefore, sufficient to prove the Corollary under the assumption that
ar is a (k — 1)-extended partition, in which case
Syt ={p'|pe S}
Assume the corollary proved for k — 1. One has for all g € S ¥,
If = Po* fllr =/ — &) = P*(f— Dlir < Dxw(f— g; |7)) < Dilw|llf” — &'l
Hence, as S¥7! ={g’|g € S,}, one gets
Lf = Po* flly < Dyfmr| dist (7, SE71).

But as

dist(f', S <If — Py f'llr,
all statements of the corollary for k follow from their assumed correctness for
k—1. Q.E.D.

Remark. The statement in [2] to the effect that “f'e Lip$*~"(I)” in (ii) of the
preceding corollary can be weakened to “‘f e C*~I(I) and f*~1 is of bounded
variation” is incorrect, as an examination of the simple case k =2 quickly
shows. The converse of (ii) will be considered in a subsequent note.

5. REMARKS ON ESTIMATING D,

As has just been pointed out, P,? is broken line interpolation, i.e., the linear
functionals A; are just point functionals,
Aif:f(ti-l-l) fOI‘ all i.
For the case k =3 of approximation by parabolic splines one may choose

i+t
NS =5 £t = a7 (152 )|
giving
i< D;=3 foralli,

with strict inequality iff ¢, , = ¢,,,.

Already for k = 4, the A;’s become quite complicated, if one insists on choos-
ing them as linear combinations of point functionals.

In view of Theorem 3.1 and Lemma 3.2, A; may be constructed in general
as follows. Choose r=r(i) such that J,=1[t,,1¢.,,] is a largest among the
intervals J;, j=i+1,...,i+k —2. Let

t,.=S0<S1<...<Sk_1=I,+1

be the extremal points of the Chebyshev polynomial T,_; of degree k — 1
adjusted to the interval J,. Define

Clay, .. 05—y) = det (ot — f14n)*” l)n m=1
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and set

A k—1

Af= 2 1Y*Buf(sw) forallf,

m=0
B =C(50,815 s Smat>Smits -+ orSke1)s m=0,...,k—1.
Then
NE—1)'=0, =i+, .i+k—1,
hence
/\i¢j:0’ J# L
Therefore, with
Ai :xi/xi(l)a

one has

inf > A0

Jr

b — j;i Vi

The argument in Lemma 3.2 merely shows that ||A,]] can be computed as
”)\iH = I/\i Tk—l]-

This is so since C(«a,,...,o_;) is a continuous function of the «;’s and is, by the
argument in Lemma 3.2, not zero for f, <oy <ay <... <oy <t,;. The
Bm, m=0, ..., k — 1, are therefore all of one sign. Hence, as T, alternates on
the points s5,,, m =0, ..., kK — 1, one has

k-1

A Tk—l] = mZO |Bm|/|7\i(1)| = Al

One computes D, to be <15 and D;s < 100. But it should be clear on examin-
ing closely the arguments in this note that the linear projectors P,* are probably
far from being minimal in norm for the range S,*. The chief reason for this
is the fact that the distance of ¢, from the linear span of the remaining ¢,’s
was measured only on some ‘“‘small’” interval rather than with respect to the
norm on C(I).
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