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1. SUMMARY

Let TT:a = to < t l < ... < tn= b be a partition of the interval I = [a,b], k an
integer greater than one, and denote by S17k the set of all polynomial spline
functions on [a,b] of degree k - I on TT, i.e., with (interior) joints (or knots)
at the points t l , t2 , '00' tn-I' This note is concerned with the behavior of

dist (f, S/) = inf{llf- plIII P E S17k},
as the mesh of TT,

ITTI = max (t1+1 - tl),
1

goes to zero. Here,jis an element of the real Banach space C(l) with norm

Ilg]II = max{lg(t)llt EI}, for all g E CCl).

It is proved that, for allfE CCl),

dist(f, S/) = O(w(f; ITTI)) (1.1)

as ITTI --+ 0, where w(f;·) is the modulus of continuity of f Hence, if
fE c(r)(l), then

(1.2)

for °< r < k - 1. In particular,

for fE C(k)(l), or, more generally, for fE C(k-1)(l), such thatpk- I ) satisfies
a Lipschitz condition, a result proved earlier by different means [2]. These
results are shown to be true even if I is permitted to become infinite and some
of the knots are permitted to coalesce.

The argument is based on a "local" interpolation scheme P17 by splines,
which is, in a way, a generalization of interpolation by broken lines, and
which achieves the convergence rate (1.1). The linear projector (i.e., linear
idempotent map) P 17 can be shown to be bounded independently of TT. Hence,

I This work was partially supported by NSF grant GP-07163.
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the argument supplies the fact that any sequence S:n with lim l?Tnl = 0 admits
a corresponding uniformly bounded sequence P17n of linear projectors on
C(I) with S:n the range of P17n , which converges strongly to the identity. Such
sequences are important for the application of Galerkin's method and its
generalizations to the approximate solution of functional equations (cf.,
e.g., [1]).

The following standard notation will be adhered to throughout. For T
some set, meT) denotes the Banach space of all bounded real-valued functions
on T, with norm

IIJIIT = sup IJ(t)l, for allJE meT).
tET

IfTis a closed subset of the real line, ~,then C(T) denotes the closed linear
subspace of meT) consisting of all continuous (bounded) functions on T.

2. GENERAL REMARKS

The arguments to follow derive from the following considerations.
Let X be a normed real linear space, {rPIYi ~ 1 a finite subset of X with Sits

linear span. A set {/\};' ~= I of linear functionals on X is said to be a dual setJor
{rPI}7 ~ I if

AlrPj=Oij, i,j=l, ... ,n. (2.1)

If {rPI}7 ~ I has a dual set {AI};' ~ I consisting of continuous linear functionals,
then the rule

n

Px = 2: (A; x) rPI, for all x EX,
i~ 1

(2.2)

(2.3)

defines a continuous linear projector P on X with range S. In fact, since
{rPI}7 = I is a finite set, there exists an A such that

fiJI IX; rPljl ,,;; AII(IXI)II", for all (IX;) E ~n.

Then, for all x EX,

IIPxl1 ,,;; A max IA; xl ,,;; A max IIAlllllxll,
I I

hence

IIPII ,,;; A max IIAIII.
I

The last inequality in (2.4) also shows that

(2.4)

(2.5)
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since for x = L lXir?i> one has ,\x = 1Xi> i = 1, ..., n. This statement has the
interesting converse:

LEMMA 2.1. Let X be a normed linear space, {r?J7~ 1 a subset of X. If there
exists a B> 0 such that

(2.7)

then {r?i} has a dual set {AJ of continuous linear functionals on X satisfying

max IIAil1 < B.
i

(2.8)

Proof Let 1 < i < n, and denote by Si the linear span of {r?jIj = 1, ... , n;
j =f i}. By a corollary to the Hahn-Banach theorem, there exists a continuous
linear functional Ai on X such that Ai[Sd = 0, IIAil1 = 1, and Ai r?i = dist(r?i' Si).
But

> inf{B- l ll(lXj)llool(lXj) E []in, lXi = I} > B-1> O.

Hence, with Ai = (Ai r?J- l Ai, i = 1, ..., n, {,\iH= 1 is a dual set for {r?i} such that
max IIAil1 < B. Q.E.D.

i

On combining Lemma 2.1 with (2.6), one gets

inf{IIL lXi r?illlll(lXi)lloo = I} = min dist (r?i, Si)'
t

COROLLARY. Let {r?J7~ 1 c X, Si the linear span Of{r?j}#i' If

o< infdist (r?;, Si),
i

(2.9)

(2.10)

then there exists a continuous linear projector P on X with range the span S
ofNi} such that

IIPII < sup IlL lXi r?illl inf IlL lXi r?ill.
1I(".)lfoo~ 1 [[("nil ~ 1

(2.11)

Remark. The right-hand-side of (2.11) can be interpreted as the condition
number ofthe basis Ni} for S. This leads to an interesting connection between
the existence of linear projectors with range S of "small" norm and the
existence of "well-conditioned" bases for S, which we will not pursue here
further.

The finiteness ofthe set {r?i} was not used in any essential way in the preceding
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discussion. The same arguments apply to a subset {«pihE.2' of X ,where !Z
denotes the integers, provided

L IXi «PiiE.2'
can be interpreted in some reasonable way as an element of X for each
IX = (IX i) E m(!Z), and, connected with this, one can ascertain the existence of
a constant A such that

II L IXi «Pill,,;;; AIIIXIl.2' for all IX E m(!Z).
iE.2'

3. POLYNOMIAL SPLINES ON THE REAL LINE

In order to circumvent certain (mostly notational) complications, and for
its own interest, uniform approximation on the entire real line by splines is
treated first.

A biinfinite real sequence 7T = {t i hE.2' is called a k-extended partition of the
rea/line &i provided

t i < ti+k-I for all i E !Z,

lim ti=±oo.
i -7 ±co

(3.1)

Hence, if di denotes the frequency with which the number ti occurs in 7T, then
di ,,;;; k - 1 for all i E !Z.

With 1T a k-extended partition of &i, k > 2, let S/ denote the set of all
(polynomial) extended splines of degree k - 1 on 7T, i.e., S"k consists of those
real-valued functions on &i which reduce to a polynomial of degree ,,;;;k - 1
on each of the intervals [til tl+ l ], for all i E!Z, and which have k - 1 - di

continuous derivatives in a neighborhood of t i , for all i E !Z. Further, define

B/ = S"k n C(&i), (3.2)

the set of bounded splines of degree k - I on 7T.

H is shown in [4; Theorem 5] that S/ is linearly isomorphic to &i.2', the
isomorphism being

(3.3)

Here, with a slight change of notation as compared with [4],

is k times the k-th divided difference in s of the function

g(s; t) = (s - t)~-I

(3.4)

(3.5)
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on the points tb ... , tilk . Thus, if t; t;'1 '" < tiLk> then

i+" i+k

Afi(t) k L (tj-t)~-l/rr (tj-tm ).
.i i Tn= i

m=l-'j

223

(3.6)

(3.7)

The basic properties of the Mj's all follow easily from the fact (already
observed in [3]) that

f(ti"'" ti1k) = ~! J:oo M;(t)pk)(t)dt

for allf EO elk). It follows, in particular, that

Mj(t) ;;;, °with equality iff t ¢c (ti> tilk),
and

(3.8)

J:oo Mi(t) dt = J::+k M;(t) dt = I. (3.9)

Note that (3.8) guarantees that LiE2l' IXiMi(t) is well-defined at every tEO:J1!
for all IX EO f!A!2l', since, for t EO [tj, tj+Il,

For the purposes of this note it is more convenient to work with the spline
functions

=g(ti+b ... ,tilk ; t)-g(ti, ... ,tilk- 1 ; t),

since this normalization gives

To prove (3.11), observe that

.) {O,t;;;,ti+k-bg(tj, ... ,tj+k-l, t = I
, t < t j ,

(3.10)

(3.11)

since, in either case, g(tj, ... , tilk- 1 ; t) is the (k - I)st divided difference of a
polynomial in s of degree <k - I, this polynomial being p(s) == °when
t;;;, tj+k-b and p(s) == (s - t)k-l when t < tj • Therefore, for t EO [tj, tj+Il,

j

L (Mt) = L [g(t i+ 1, ••• , t i+k ; t) - g(ti , ••• , ti+k-I; t)]
iE:?Z' i=j+l~k

=1.

F or later reference, various properties ofthe o/i's are collected in the following
15
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LEMMA 3.1. Let 7T be a k-extended partition of f?Jt, and let epi(t) be defined on
/YI by (3.1O),for all i E :!Z'. Then

(i) 0,,;:;; epi(t) ,,;:;; 1for all t E iJ1t and all i E :!Z';
(ii) epi(t) = 0 iff t ¢:. (t;, ti+k),for all i E :!Z';

(iii) 2: epi(t) == 1;
i E;:Z

(iv)

(v) if {7T(n)},:/~ 1 is a sequence ofk-extended partitions for ;31 such that

lim t}n) = t j ,

tl-.--700

} = i, ... , i + k,

then the corresponding sequence {ep\n)},::~ 1 converges un{(ormly to ep;, i.e.,

(3.12)
n-7OO

Proof (i) and (ii) follow from the corresponding statement (3.8) for the
M;'s and from (iii); (iv) is a consequence of (i) and (iii). This leaves (v).

Since ..f..\n)(t) = 0 for t de (t\n) t!n») and lim t (n) = t· for all)' E :!Z' it is sufficient'Pt "F l' t+k , JJ ,
n -)00

to prove
(3.13)

11--7 co

for some finite interval I containing [t;, ti+k] in its interior. Now, since
g(s; t) = (s - t)~-1, g and its first k - 2 partial derivatives with respect to s
are jointly continuous in sand t uniformly on I x I. The (k - l)st divided
difference

is, therefore, jointly continuous in Sj, ... , Sk, t, uniformly on

{(sj, •.. , Sk) E I x ... X lis! ,,;:;; Sk - 8, Sl ,,;:;; S2 < ... ,,;:;; Sk} x I,

for each 8 > O. But this implies (3.13), since epi(t) is the difference of two
(k - l)st divided differences of g(s; t) in s, and the 7T(n) and 7T are k-extended
partitions and lim t?) = t j ,} = i, ... , i + k. Q.E.D.

n-7OO

The main result of this section is the following

THEOREM 3.1. Let k:> 2, let 7T = {ti}iE% be a k-extended partition, and let
epi be defined as in (3.10), for all i E:!Z'. Then there exists a positive constant
Dk depending on k but not on 7T, such that

DI: 1 < infdist i (ep;, S;),
iEZ

(3.14)
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where

22S

and the seminorm . j is giren by

f i - max{lf(t)lltill tick-I}, for allfE C(2,f). (3.16)

Remark. In the light of Section 2, this theorem implies the existence of a
dual set {/\LE:t' for {cPi}, such that

IAdi ~ Ddt'lj ~ Dkl fII,'1f for allfE C(£3£).

The linear projector Pl1 on C(9i'), given by the rule

Pl1 f = L (Ad) cPj for allfE C(:11'),
iE ;z

(3.17)

(3.18)

has then B/ as its range, and satisfies rIP11i1 ~ D k • Moreover, since, by (3.17),
each Ai has its support in the interval [ti+l,filk-IJ, one obtains the pointwise
error bound

If(s) - (Pl1fHs)! ~ Dkmax {If(s) -f(t)l! t E [tj-kiZ,fj+k-I]},

for all S E [rio titd, all i E :!.t, and all f E C(9i'). (3.19)

for the "local" interpolation scheme P11'

Proof of Theorem 3.1. It is sufficient to prove the theorem for a strictly
increasing partition 7T. For, if 7T is not strictly increasing, then one can find a
sequence {7T(n)}~ I of strictly increasing partitions such that

lim tJ") .~. t i for allj E:!.t.
n ~.):::o

By Lemma 3.1(v), one has then

lim IlcPSn
) - cPjll:H = 0

n ---7 co

for the corresponding sequence {cPY')}~~ I, for all j E:!.t. Since on the finite
interval [tjll,filk-IJ, all but finitely many of the cPSn

) vanish, one has

lim II 2: exAsn) - L exjcPj = 0 for all ex E m(:!.t).
U-3>OO;jEX jE;:r i

Hence, for all ex E m(:!.t) and all i E :!.t,

dt'st,' (-I.("tI), S("tI) <: -I.(tI) _" -I.(tI/1 1'1-1. _" -I. Ii
Y' - 'f'i L,LLj"fj !.~!"Pi .L.:.a:j\fJ,!"

: }=/::- 1 'II i! J or I iii

Therefore, for all i E :!.t,

lim dist i (cP~tI), S~tI» < dist j (cPi' Silo
nAC\l

(3.20)
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Hence, once a positive constant D k has been shown to exist such that for every
strictly increasing partition

D"k 1 < infdist i (<p;, S;),
i

then, by (3.20), this inequality holds also with the same constant for every
k-extended partition.

Hence, assume IT to be strictly increasing, and let i E !!l'. For k = 2, there is
little to prove. For, then

while by Lemma 3.1,

<piti+J = oij for allj E !!l'.

Thus, dist; (<p;, S;) = I, and D2 = 1 will do.
Assume, therefore, also, k > 3. Since LjE:!l' <pj = I, one has

Further, iff(t) = 1 - '2Jfci IXAit), and i + 1 < r < i + k - I, then,for suitable
fJI, ... ,fJk-b one has

k-l
f(t)=I+ 2: fJit-ti+j)k-l, foralltE[t"tr+I]·

J=i

To see this, observe that, by (3.10) and (3.6),

Hk
<Pit) = (t jlk - tj) L (tm - t)~-l/w"(tm),

m~j

where
Hk

w(t) = II (t - tm).
m=j

But, since (s - t)~-l + (-I)k-l(t - S)~-l == (s - t)k-l, one has also

<Pit) = (tHk - tj)g(tj, ..., tj+k; t)

= (-I)k(tj+k - tj)g(t; tj, ... , tjtk)

jtk

= (_l)k(tjtk - tj) 2: (t - tm)k!--l/w'(tm)'
m~j

Hence, if j < i, then, on [t" tr+tl, <Pit) can be written as a linear combination
of the functions (t - tr+l)k-I, ... , (t - tHk)k-l, while if j > i, then, on [tr,tr+l],
<Pit) can be written as a linear combination of the functions (t - tj)k-I, ... ,
(t-t=r)k-l.
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It follows that, for i + I z:; r i + k - I.

k-l

dist; (4)i' S;) ;;0 inf I + 2: fJit - tit j)k-l
{JEgfk-l j 1 [fr.161]

Tn particular, choose r such that also

tHI - t j < tri 1- tn forj = i + I, ... , i + k - 2.

227

(3.21)

Then, since the right-hand-side of (3.21) is invariant under a change of scale
and origin in :!l, the proof of the theorem is complete, once the following
lemma is proved:

LEMMA 3.2. Let I = [-1, I], n > 2. There exists a positive constant Cn depending
only on n, such that

n

C;;I < 1 + L fJ.(t-s·n
j = 1 J J ::1

whenever (fJj) E:!ln and

Sl < S2 < ... < Sm = -I, 1 = Sm+1 < ... < Sn, (3.22)

(3.23)

Proof The argument is based on the fact that

can be expressed in terms of the s/s. Explicitly, one has

-I ~ j(n)Y =.LUiYn-i .,
I ~O 1

where the u;'s are the elementary symmetric functions in the s/s, i.e.,

n n

IT (t + Sj) =L u;ti.
j c. 1 i~ 0

Further, the y;'s are given by

n

T.(t) = L Yi t i
,

i~O

(3.24)

(3.25)

(3.26)

(3.27)

where Tn is the Chebyshev polynomial of degree n.
It follows that y-I is linear in each of the Sj, hence for some constant Cn

depending only on n, one has

[y-II <cnmaxlsj['
j
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But, then, with (3.23),
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1')11 ;;;, [cn(2n + l)r 1
,

so that en = cnC2n + 1) will do.
lt remains to prove (3.25). To this end, observe that the functions

ho(t)=-I, j= 1, .. .,n,

form a basis for the linear space fYJn of all polynomials of degree ,;;;n. To see
this, note that the relation

n n

flo+ 2: fl/t~sI)n=- 2: )ti ti
j I i ~ 0

(3.28)

is equivalent to

flo 8ni + .i fli-sJi = )tn-i/(~)'
J = 1 1

i = 0, .. .,n, (3.29)

as one can easily see by comparing the coefficients of like powers of tin (3.28).
On setting t = -Sj in (3.26), one finds

hence,

II

2: Ui(-Sj)i = 0,
i 0

j= l, ... ,n,

n n

0= flo + 2: flj 2: uJ-SJi = flo,
j =.1 i =0 0

(3.30)

showing that (3.28) may be solved for flo. As for flj, j;). 1, note that the first n
equations in (3.29) involve only flj, j s 1, and may be solved for these, since
their coefficient matrix is the Vandermonde matrix on the distinct points
-Sj,j = 1, ... , n, and hence nonsingular. This shows that the set {hjlj = 0, .. .,n}
is generating for fYJm hence a basis.

With this, {hit)lj= l,oo.,n} is easily seen to be a Chebyshev set on 1. 2

For, assume by way of contradiction that

n

f(t) =- 2: flj hit)
j~ 1

vanishes at the points r;, i = 1, ... , 11, with

(3.31)

2 For the definition and basic properties of Chebyshev sets, cf.. e.g., [5, Chap. 3J.
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while not all of the f3/s are zero. Then, since by the above, {ltj(t)1 j ~ L .. ., II}
is linearly independent on I, f(t) is not identically zero. It is, therefore, no
loss to assume that

which implies, with (3.28) and (3.30), that

z· A /./('/.1)'..;... ail'"
i co 0

o. (3.32)

But this is impossible. For,

Z. A / (n) ._ !_ 1 .' 11...;... aiY,,-i . -(II.) LIT (Si-rT(i)'
I ~ 0 / T I ~ 1

where the summation on the right is taken over all permutations T of degree n.
Because of (3.22) and (3.31), all terms in that sum are seen to have the same
sign and, since n ;:;;, 2 and the r/s are distinct, not all terms are zero. Hence

contradicting (3.32).
It follows that if e(t) == I + 2:'}" 1 f3it - Sj)" is the error in the best approxi

mation - 2:'} ~ 1 (3)lj to howith respect to the norm !I' IiI then e(t) must alternate
at least n + I times on I. Since eErY", e is, therefore, necessarily of the form

e(t) == yTIl(t),

and (3.25) follows from (3.28) and (3.30).

COROLLARY 1. The linear map ep given by

Q.E.D.

is a linear homeomorphism from m(;,z') to its range. Hence, its range coincides
with B/, and B/ is a closed linear subspace of C(211).

Proof Let !X E m(;,z'). Then, for all i E ;,z' such that !Xi # 0, one has

(3.33)

Hence

(3.34)
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showing that @ is bounded below, hence boundedly invertible on its range.
Since also, by Lemma 3.1,

II@IXII& < IIIXII.?l' for all IX E m(iZ), (3.35)

(3.36)

the first assertion follows.
By (3.35), the range of @ is contained in C(:?AI), hence in B,/. Further, by

[4; Theorem 5], each PES"k is of the form

p = L IXi 1Ji' for some IX E :?AI.?l'.
i E.?l'

But then, by (3.33), p E B"k implies IX E m(iZ), or, p is contained in the range
of @. It follows that the range of @ coincides with B,/, hence, in particular,
that B,/ is closed. Q.E.D.

COROLLARY 2. There exists a linear projector P" on C(r?A') with range B,/
such that

(i) IIP,,11 < D k ;

(ii) If(s) - (P"f) (s)[ < max {If(s) - f(t)llt i -k+2 < t < ti+k- 1},

for all s E [ti, ti+d, all i E iZ, and allfE C(:?AI).

Proof Let i E iZ. By Theorem 3.1,

dist;(1Jb Si) = inf{li1Ji - j~ i IXj 1JjllJe.: E m(iZ)} > Dk
l
> O.

Hence, by a corollary to the Hahn-Banach theorem, there exists a linear
functional Ai on C(':?€) such that

Ai 1Jj = oij for allj E iZ,

With this, the rule

P"f= L (AJ)1Ji' forallfEC(R),
iEZ

(3.37)

defines a linear projector on C('~) whose range is B,/, by Corollary 1. Further,
its norm is <Dk , since

\!P"fll91 < sup IAJI < sup Dkllflli < Dkl\f\\JI!'
i i

To prove (ii), letf E C(:?AI), s E :?AI. Then

f(s) - (Pf)(s) = f(s) - L (\f)1Jis)
jE.?l'

= L Alf(s)'l - fHis),
jE.?l'
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since 1= LiE:7 epi E B:, therefore I = Pl1(l) = LiE:7 Ail)epj' Hence, for
i E :!l', s E [t;, tt+d,

If(s) - (Pf)(s) [ = Ii ~ i~l-k Aif(s)'1 -f) epis)1

,;;; max{IAif(s)'} - f)lli + } - k <},;;; i}

,;;; Dkmax{llf(s)'} - fllj Ii + I - k,;;;},;;; i}

= Dkmax{lf(s) - f(t)lltt+2-k';;; t,;;; ti-1+k},

using (3.36) and the definition (3.16) of II' Iii' Q.E.D.

4. SPLINE ApPROXIMATION ON A FINITE INTERVAL

The interpolation scheme Pfi introduced in the previous section for a k
extended partition 7T = {tJt E:7 of f!lt is "local" in the sense that, on [to, tn],
Pfifdepends only on the values offin the interval [t2-k,tn-2+k]; this follows
directly from (ii) of Corollary 2. In particular, if 7T is such that

t2- k = t3- k = ... = to = a, b = tn= tn+l = ... = tn+k- 2,

then Pfif on 1= [a,b] depends only on the values off on I. Hence, by the
simple device of restricting attention to the interval I, Pfi becomes a linear
projector P l1 on C(I) with range the set of extended polynomial splines S/
of degree k - I on the restriction

of 7T to I. Since the bounds for Pfi derived in the previous section are also valid
for Pm one obtains, finally, the results announced in the introduction.

To make these statements precise, define for 1= [a,b] the restriction map
from C(f!lt) to C(I) by the rule

(R]x)(t) = x(t), for all tEl, x E C(f!lt). (4.1)

R] is a norm-reducing linear map, having the extension map E],

(

x(a), t < a,
(E]x)(t) = x(t), a,;;; t,;;; b, for all x E C(l),

x(b), b < t,

as a norm-preserving right inverse.
Call7/' = {tiH =0 a k-extended partition for I, provided

a = to < t1 ,;;; ••• ,;;; tn- 1 < tn= b,

t l < tt+k-l for all i.
16

(4.2)

(4.3)
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(4.4)

As before, let di denote the frequency with which the number t i appears in 'TT.

Then define the set S/ of all polynomial extended splines of degree k - 1 on
'TT as the set of all real-valued functions on I which, on each of the intervals
[ti' ti+d, i = 0, ... , n - 1, reduce to a polynomial of degree <k - 1, and have
k - 1 - di continuous derivatives in a neighborhood of t i , i = 1, ... , n - 1.

LEMMA 4.1. Let 1= [a,b] be some finite interval, 'TT = {t;}7~0 a k-extended
partition for I, and extend 'TT in any way whatsoever to a k-extended partition
-iT = {t;}i E2' oftJi, subject only to the restriction

{
a, -k + 2 <j < 0,

t j = b,n<j<n+k-2.

IfF is a linear projector on C(tJi) with range B;/, then

P=RrFEr

is a linear projector on C(l) with range S/, satisfying IIPII < IIFII.

(4.5)

Proof Since the numbers to, tn each appear in -iT k -- 1 times, every p E Brrk
need only be continuous at to and tn- It follows that EI maps S/ into B;/.
Hence, as F is the identity on its range, B;/, it follows that, for p E Srrk,

Pp = (Rr!JEI)p = RrF(EIP) = RrCEIP) = (RIEI)p = P,

or, P is the identity on Srrk. But, since R I maps the range B/ of P to Srr\ the
range of P must be contained in Srrk. Hence, the range of P is S/, and P is
the identity on its range, i.e., P is a linear projector. Finally,

Q.E.D.

In particular, Prr = RIPfiEI is a linear projector on C(I) with range Srr\
where Pfi is as described in Corollary 2 to Theorem 3.1. This gives

THEOREM 4.1. There exists a positive constant Dk depending only on k, with
the property: For all k-extended partitions 'TT of1= [a,b], there exists a linear
projector P rr on C(l) with range S/ such that

(i) lIPrrll < D k

(ii) If(s) - (Prrf) (s)1 < Dkmax{lf(s) - f(t)llt E [t i- k+2 , tHk-l]},
for all s E [til tHd and alifE C(I),
where t j = a,j < 0, t j = b,j> n.

f(s)-(Prrf)(s) = (Erf)(s)- [Pfi(Erf)](s), allsE [a,b];

hence, (ii) follows from Corollary 2 to Theorem 3.1.
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COROLLARY 1. For allfE C(I),

iI-Prrflil~Dk(k-l)w(f; [17[).

Proof This is a consequence of (ii) of the preceding theorem.
Denote Prr by Prr\ to emphasize dependence on k.

COROLLARY 2. The preceding estimate can be improvedfor smoothf:

• k ~ ~ ~ I Ir (r). I I(I) ilf- Prr fill ~ D k Dk- I Dk - r 17 w(f , 17),
for allfE c(r)(I), r = l, , k - l,
with Dk = Dk(k - I)for k ~ 2, and D1 =~ l

Hence,
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(ii) Ilf- P / fill = O(j17I k) for all f E Lip~k-!) (1),

where, as usual, Lip~k-l)(l) consists of allfE C(k-!l(1) withpk-l) satisfying a

Lipschitz condition (with exponent 1) on I.

Proofby induction on k. Consider k = 2. Then P / is broken line interpola
tion, i.e.,

Assume, without loss in generality, that t - t i ~ -!-(tHI - t i ). Then, with
fE C(ll(!),

f(t) - (Prr2f)(t) = Jt F(s)ds _f(tHI ) - f(t;) (t - t i)
ti ti+I - t i

= (f'('T)) - F(g))(t - t;),

for some 'T), t E (ti' t HI ), from which (i) follows for this case.
As for the general case, observe that

S;-I = {p'!p E Srrk},

unless 17 contains points repeated k - 1 times, in which case, neither side is
defined. But as 17 is a k-extended partition on I, I may be subdivided into finitely
many subintervals Ii = [ai,aHd, i = 1, ... , r, with a = al < a2 < ... < ar+I = b,
such that{aili = 2, .. .,r} coincides with the set ofpoints in 17 which are repeated
k - 1 times. If 17i denotes the restriction of 7T to Ii> then 17i is a (k - I)-extended
partition of Ii> and Lemma 4.1 shows that

hence
f(t) - (Prrkf)(t) = f(t) - (P;.!)(t), for all t Eli'
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It is, therefore, sufficient to prove the Corollary under the assumption that
7T is a (k - I)-extended partition, in which case

S;-I = {p'lp E S/}.

Assume the corollary proved for k - 1. One has for all g E S/,

Ilf- P,/ fill = 11(f- g) - P/(f- g)III < Dkw(f- g; 17T1) < Dkl7T1111' - g'lil'

Hence, as S;-I = {g'lg E S/}, one gets

Ilf- P/ fill < Dk l7T1 dist(f', S;-I).
But as

dist(f', S;-I) < III' - p~-I 1'111,

all statements of the corollary for k follow from their assumed correctness for
k-l. Q.E.D.

Remark. The statement in [2] to the effect that "fE LiPik-1 l(I)" in (ii) of the
preceding corollary can be weakened to ''IE C(k-D(I) andj<k-Il is of bounded
variation" is incorrect, as an examination of the simple case k = 2 quickly
shows. The converse of (ii) will be considered in a subsequent note.

5. REMARKS ON ESTIMATING Dk

As has just been pointed out, P1T
2 is broken line interpolation, i.e., the linear

functionals Ai are just point functionals,

AJ= fCtI+I) for all i.

For the case k = 3 of approximation by parabolic splines one may choose

giving
11M < D3 = 3 for all i,

with strict inequality iff ti+l = t1+2 '

Already for k = 4, the,\/s become quite complicated, if one insists on choos
ing them as linear combinations of point functionals.

In view of Theorem 3.1 and Lemma 3.2, Ai may be constructed in general
as follows. Choose r = r(i) such that Jr = [t" tr+l] is a largest among the
intervals Jj,j = i + 1, ..., i + k - 2. Let

tr = So < SI < ... < Sk-I = tr+l

be the extremal points of the Chebyshev polynomial Tk- I of degree k - I
adjusted to the interval Jr' Define

C(at:I>' .. , at:k_l) = det((at:m - tl+n)k-I)~.-ml= I>
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k-l

AJ= L (_l)m f3mf(sm) for allf,
m=O
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Then
m=O, ... ,k-l.

hence
j=i+ l, ...,i+k-l,

Therefore, with

one has

The argument in Lemma 3.2 merely shows that IIA-;II can be computed as

11"-111 = 1"-/ Tk-ll·
This is so since C(al"'" ak-I) is a continuous function of the at's and is, by the
argument in Lemma 3.2, not zero for t, < al < a2 < ... < ak-I < t,+I' The
13m, m = 0, ..., k - 1, are therefore all of one sign. Hence, as Tk - I alternates on
the points Sm, m = 0, ... , k - 1, one has

One computes D4 to be <15 and Ds < 100. But it should be clear on examin
ing closely the arguments in this note that the linear projectors P'/ are probably
far from being minimal in norm for the range 8 1Tk. The chief reason for this
is the fact that the distance of 1>1 from the linear span of the remaining 1>/s
was measured only on some "small" interval rather than with respect to the
norm on C(l).
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